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I will talk about four Approaches:

• Gaussian Mode ABCD Matrix 
Approach

• Dynamic Multimode Approach

• Physical Optics Beam Propagation 
Method based on the 
Principle of Fox and Li



The Gaussian Mode ABCD 
Matrix Approach

Computation of the transverse modes by 
the use of the Gaussian Mode ABCD Matrix 
Approach is very fast and powerful. It 
delivers in many cases results which are in 
good agreement with measurements. This 
has been proved by many users of the 
program LASCAD.



As known textbooks of lasers, beam 
propagation through a series of parabolic 
optical elements can be described by the 
use of ABCD matrices. In many cases the 
optical elements in a resonator, such as 
spherical mirrors and dielectric interfaces, 
can be approximated parabolically.

The ABCD Matrices for mirrors, lenses, and 
dielectric interfaces are well known. I am 
showing some examples
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The ABCD matrix algorithm can be applied to 
compute the propagation of rays, but also to 
transform the so called q Parameter of a 
Gaussian beam

R   radius of the phase front curvature 
w   spot size defined as 1/e^2 radius of    

intensity distribution
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The transformation of the q parameter by an 
ABCD matrix is given by
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The q parameter is a complex quantity 
and is given by



ABCD Matrices can be cascaded

M1 M2 M3

The total matrix is given by
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To model thermal lensing the ABCD Matrix of a 
Gaussian Duct is important

A gaussian duct is a transversely inhomogeneous 
medium whose refractive index and gain 
coefficient are defined by parabolic expressions 
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n2 parabolic refractive index parameter

α2 parabolic gain parameter

The parabolic parameters n2 and α2 of a 
gaussian duct are defined by



ABCD Matrix of a Gaussian Duct
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the ABCD matrix of a gaussian duct can be written 
in the form



In LASCAD the concept of the Gaussian duct 
is used to compute the thermal lensing effect 
of laser crystals. For this purpose the crystal 
is subdivided into short sections along the 
axis. Every section is considered to be a 
Gaussian duct. 



A parabolic fit is used to compute the parabolic 
parameters for every section.

Example: Parabolic fit of the distribution of the 
refractive index



With the ABCD matrices of mirrors, 
lenses, dielectric interfaces, and 
Gaussian ducts many of the real 
cavities can be modeled.

To compute the eigenmodes of a cavity 
the q parameter must be self-
consistent, that means it must meet 
the round-trip condition.

For every section of the crystal an ABCD 
matrix is computed



Round-Trip Condition
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The round-trip condition delivers a 
simple quadratic equation for the q 
parameter.

All these computations are simple algebraic 
operations and therefore very fast. 
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Gaussian Optics of Misaligned Systems

With 2 x 2 ABCD Matrices only well aligned 
optical systems can be analyzed. However, 
for many purposes the analysis of small 
misalignment is interesting.

This feature has not been implemented yet 
in the LASCAD program, but it is under 
development, and will be available within 
the next months. 
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As shown in the textbook LASERS of Siegman the 
effect of misalignments can be described by the 
use of 3x3 matrices 
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Here E and F describe the misalignmet of the 
element



Dynamic Analysis of Multimode and 
Q-Switched Operation (DMA)

The present DMA code uses the transverse
eigenmodes obtained by the gaussian ABCD 
matrix approach. However, DMA also can use 
numerically computed eigenmodes.

To provide a time dependent analysis of 
multimode competition and Q-switched 
operation of lasers we have developed the code 
DMA



In the present code the transverse mode 
structure in the cavity is approximated by a set 
of M Hermite-Gaussian (HG) or Laguerre-
Gaussian (LG) modes. 

Since HG and LG modes represent sets of 
orthogonal eigenfunctions with different 
eigenfrequencies, we assume, that each 
transverse mode oscillates inde-
pendently, and therefore the influence of 
short-time locking and interference effects 
between the modes is neglected on the 
average. This delivers the following



Multimode Rate Equations
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Si(t) number of photons in transverse mode i 
SC(t) total number of photons in the cavity
si,C(x,y,z) normalized density distribution of photons



nA refractive index of the active medium

c vacuum speed of light

N(x,y,z,t) = N2 – N1 population inversion density (N1~ 0)

RP=ηPPa/hνP pump rate

ηP pump efficiency

Pa(x,y,z) absorbed pump power density

σ effective cross section of stimulated  
emission

τC mean life time of laser photons in the 
cavity,

τf spontaneous fluorescence life time of 
upper laser level

Ndop doping density.



An important quantity is the mean life time τC of 
the laser photons in the cavity. It is given by
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To obtain the normalized photon densities 
si (i=C; 1,…,M) the complex wave amplitudes 
ui(x,y,z) are normalized over the domain 
Ω=Ω2Dx[0,LR] of the resonator with length LR. 
Here the ui (i=1,…,M) denote the amplitudes of 
the individual modes, whereas uC denotes the 
amplitude of the superposition of these modes 
In our incoherent approximation the absolute
square of this superposition is given by
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The amplitudes ui and the normalized photon 
distributions si are connected by the following 
relation  
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Note that the photon density inside the 
crystal is by a factor nA higher than outside 
due to the reduced speed of light. 



Laser Power Output

The laser power output is obtained by 
computing the number of photons passing the 
output coupler per time unit. In this way one 
obtains for the power output delivered by the 
individual transverse modes
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This plot shows a typical time dependence 
obtained for the total power output.

Since the computation  starts with population 
inversion density N(x,y,z,t)=0, a spiking behavior 
can be seen at the beginning, which attenuates 
with increasing time.



This plot shows a typical time dependence 
obtained for the beam quality.

Again the spiking at the beginning is caused by the 
vanishing inversion density N(x,y,z,t) at the start 
of the computation.



Modeling of Q-Switched Operation

Time dependence of active Q-switching is cha-
racterized by three time periods which can be 
described as follows:

• load period – period I
• pulse period – period IIa
• relaxation period – period IIb



Development of population inversion and laser
power during these periods is shown schematically
in this plot



After the load period this artificial loss is
removed that means the Q-switch is opend
and the pulse can develop.

A typical pluse shape obtained with our 
DMA code is shown on the next slide.

To prevent lasing during the load period a high 
artificial intra-cavity loss is introduced





Apertures and Mirrors 
with Variable Reflectivity

Apertures and output mirrors with variable 
reflectivity can be taken into account in the DMA
by introducing specific losses Li for the individual
modes.



An important realisation of mirrors with 
variable reflectivity are supergaussian output 
mirrors. The reflectivity of such mirrors is 
described by 
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Here Rmin is a peripheral bottom reflectivity. 



With supergaussian mirrors the beam quality can 
be improved considerably without loosing too 
much power output. 

This shall be demonstrated by the following 
example.



Beam profile without confining aperture.
Power output 6.87 W



Beam profile for the same configuration with 
supergaussian aperture. Power output 4.22 W



For cases where parabolic approximation and 
ABCD gaussian propagation code are not 
sufficient, FEA results alternatively can be used 
as input for a physical optics code that uses a 
FFT Split-Step Beam Propagation Method (BPM). 

The physical optics code provides full 3-D 
simulation of the interaction of a propagating 
wavefront with the hot, thermally deformed 
crystal, without using parabolic approximation.



The results of the FEA code of LASCAD can be used with 
the ABCD gaussian propagation as well as with the BPM 
physical optics code. 

FEA Results:
Temperature distribution
Deformation
Stress

ABCD Gaussian 
Propagation Code

Physical Optics  
Propagation Code



Based on the principle of Fox and Li, a series of 
roundtrips through the resonator is computed, 
which finally converges  to  the fundamental or to 
a superposition of higher order transversal 
modes. 
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The BPM code propagates the wave front in small 
steps through crystal and resonator, taking into 
account the refractive index distribution, as well as  
the deformed end facets of the crystal, as 
obtained from FEA.

In principle, BPM provides a solution of following 
integral equation for the electromagnetic field.



Convergence of spot size with cavity iteration



The wave optics computation delivers 
realistic results for important features of a 
laser like intensity and phase profile as 
shown by the next two slides.



Intensity distribution at output mirror



Phase distribution at output mirror



The BPM code is capable of numerically 
computing the spectrum of resonator 
eigenvalues and also the shape of the 
transverse eigenmodes.

An example for a higher order Hermite-Gaussian 
mode is shown in the next slide. 



Mode TEM22 obtained by numerical 
eigenmode analysis
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