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Abstract: A new approach for computing eigenmodes of a laser resonator by the use of finite element analysis 
(FEA) is presented. The results obtained by this method have been successfully verified by the use of the gaussian 
mode algorithm. 
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1. Introduction 

Since the pioneering work of Fox and Li [1] numerical computation of the mode structure of a laser cavity mainly is 
carried through by the use of a round-trip integral operator being iteratively applied on the field distribution at a 
certain reference plane. In modern computer codes, the round-trip integral is carried through by a beam propagation 
method, which is used to compute a series of round-trips starting with a more or less arbitrary initial field distribu-
tion. Though widely used, this procedure is not really suited to compute particular eigenmodes of a laser cavity. 
Even if the procedure converges to the fundamental mode, usually an admixture of higher order modes remains, 
making it difficult to isolate the exact shape of the fundamental mode. Methods [2, 3] that have been proposed to ex-
tract particular eigenmodes by sampling the fluctuating field distributions at the reference plane are time consuming, 
and due to superimposed numerical fluctuations, usually not very accurate.  

In view of these problems, we present a new approach to compute the eigenmodes and eigenvalues of optical reso-
nators that is based on finite element analysis (FEA). Different from the beam propagation codes we are not using an 
integral equation, but are starting with the underlying differential equation i.e. the scalar wave equation, 
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or Maxwell's equations, if vectorial properties of the electromagnetic field are important. Compared with integral 
methods, which can use data only at one single reference plane, use of FEA has the advantage that simultaneously 
the whole resonator domain is involved into the numerical procedure. FEA however faces the difficulty that laser 
cavities usually are long compared with the wavelength. Therefore, to resolve the oscillations of the propagating 
wave a huge number of discretization grid points is necessary. To circumvent this problem we separate out the small 
scale oscillations of the electrical field by the use of a factorization as shown in the next section. 

2. Derivation of a solvable eigenvalue problem for the laser modes 

A laser cavity is a device in which an electromagnetic wave propagates in a periodically guiding structure. "Guiding 
structure" means that distributions of a complex valued refractive index and optical elements like lenses and mirrors 
are grouped along a main axis of propagation in a way that only a small part of the propagating electromagnetic 
energy is leaking out the sides of the cavity to infinity. "Periodically" means that a substructure of finite length L~  
along the propagation direction exists, and that the full periodic structure is obtained by an identical reproduction of 
the substructure after Lnz ~=  (n = 1, 2, …), where the propagation direction is assumed to coincide with the z-axis. 
Therefore, we use the factorization 
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for the phasor amplitude ),,(~ zyxE  of the electromagnetic field. Here kf is the propagation constant of the free wave. 
The quantity δ takes into account that a guided wave generally has a propagation constant, which is smaller than the 



propagation constant kf of the free wave, as well known from texts on wave guide or laser theory (see for instance 
[4], Chapt. 19.3).  If the guiding structure is independent of z, that means if 0~ →L  as in common wave guides, the 
phase fluctuations of ),,(~ zyxE  can fully be accounted for by the factor [ ]zki f )(exp δ−− . In laser cavities, this gener-
ally is not the case. For instance, in simple two mirror resonators, the lowest-order gaussian mode shows additional 
phase fluctuations given by the Guoy phase shift (see [4], Chapt. 19.3) 
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where zR is the Rayleigh range. Equation (3) shows that, in this case, the maximum variation of ψ(z) along the reso-
nator axis from the left to the right mirror is confined to –π <= ψ(z) <=  π. For higher-order gaussian modes ψ(z) is 
restricted by integer multiples of π, depending on the mode order. In the case of general paraxial resonators, which 
may be composed of mirrors and lenses, and weakly guiding refractive index distributions of finite length, ),,(~ zyxu  
can therefore be expected to be free of small-scale spatial oscillations with a scale length corresponding to the wave-
length. This leads to the important conclusion that an efficient FEA discretization with a mesh size of the order of 
the wavelength or even much larger should be possible. 

     To take into account small fluctuations of the refractive index, we define  
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where ks generally is a complex valued quantity. Then, insertion of equations (2) and (4) into equation (1) delivers 
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In most cases 410/ −<≈fkδ , therefore the term δ in the first parenthesis on the left side and in the parenthesis on the 
right side usually can be neglected, delivering 
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Since we are looking for eigenmodes, the solutions u~  and its derivatives with respect to z must meet the condition 
of periodicity imposed by the length L~  of the substructure, i. e. 
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Perpendicular to the propagation direction the laser modes usually strongly decay with distance from the axis, but 
since we are forced to use a finite computational volume, a non-reflecting boundary condition must be used for the 
transverse evanescent part of the wave. An appropriate choice is to use a Robin boundary condition 

0~~
=−

∂
∂ uiC
n
u

br ,                                                                        (8) 

where nr∂∂  denotes the derivation in direction of the normalized outer normal and Cb can be chosen as Cb = kf. 

        Equations (6 - 8) describe a solvable eigenvalue problem for the cavity modes. To derive these equations only 
minor neglects have been made. The second derivative of u~  with respect to z has not been neglected, as it is neces-
sary to derive the paraxial wave equation. Therefore, it is expected that the FEA solution delivers results of high 
accuracy for the eigenmodes of the laser cavity. 

3. Numerical Results 

To verify the obtained numerical results we selected configurations that allow for application of the gaussian mode 
algorithm, since this is the only method permitting an exact analytical analysis of laser cavities. But of course, our 
method is not confined to those cases, but can be applied to any other cavity configuration described by equation (1). 

     Fig. 1 shows results for an empty cavity 1.0 mm long with a concave left end mirror with 5 mm radius of curva-
ture and a right planar mirror. The diagram shows the spot size as a function of z obtained by our FEA approach in 
comparison with the gaussian spot size computed by the use of LASCAD™[5]. The width of the computational 
domain was 0.2 mm; in the computation 41 x  41 x 61 ≈ 102000 nodes have been involved. For the same case, Fig. 2 



shows the Guoy phase shift along the resonator axis.  Fig. 3 shows a 3D plot of the TEM22-Mode in a long resonator 
obtained by FEA.    

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Spot size along the axis of an empty with a concave left end            Fig. 2. Guoy phase shift along the axis of the cavity described in Fig. 1 
           mirror with 5 mm radius of curvature and a right planar mirror,  
           FEA results - solid line, gaussian spot size - dashed line. 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 3. TEM22-Mode in a long resonator obtained by FEA 

4. Conclusions 
The presented results show that for gaussian cavities not only the spot size but also the Guoy phase shift obtained by 
our new FEA approach are in excellent agreement with the gaussian results. As a next step we are developing a 
combination our FEA approach for the electromagnetic field with FEA tools for the thermal and structural analysis  
of laser crystals, which already are available in our computer code LASCAD™[5], to realize an accurate and reli-
able numerical tool for the analysis of thermal lensing effects in SSL and DPSSL lasers. 

5. References 
1. A. G. Fox and T. Li, "Resonant modes in a maser interferometer", Bell Syst. Tech. J. 40, 453-458 (1961). 
2. A. E. Siegman and H. Y. Miller, "Unstable optical resonator loss calculation using the Prony method", Appl.Opt. 9(10), 2729-2736 (1970), 
3. M. D. Feit and J. A. Fleck, "Spectral approach to optical resonator theory", Appl. Opt. 20(16), 2843-2851 (1981), 
4. A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986), 
5. LASCAD™, http://www.las-cad.com. 


